
NOTATION 

Pi' ui' v~, El, density, velocity components along the z and r axes, and internal energy 
of i-th phase,-respectively; p, gas pressure; cc ~, specific heat of gas at constant pressure; 
R, particle radius; O, angle of rotation of particle separatrix; CD, drag coefficient of spher- 
ical particle; po, density of particle material;i ro, nozzle radius, m; T, adiabatic modulus; 
n, underexpansion of nozzle; 0 x, u x, v x, pX gas parameters at side wall of cell; fi_, angle 
of rotation of side wall of cell with respect to axis; M, mach number of jet or cot~aveling 
flow. 
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REGULAR AND STOCHASTIC DYNAMICS OF PARTICLES DURING VORTEX GENERATION 

IN A ROTATING STREAM WITH SHEAR 

E. V. Gus!yakova and A. A. Solov'ev UDC 532.517.4 

The results of an experimental study of the initial stage of development of a con- 
centrated vortex are given. 

Many practical problems of thermophysics and hydrodynamics require knowledge of the laws 
of organization of motions in vortex formations [i, 2]. There are a number of ways of excit- 
ing vortices [3], but it still remains unclear what physical processes occur in the initial 
stages of their formation. The mechanism of formation of concentrated vorticity in the pres- 
ence of a trigger disturbance is well known [3]. During the further evolution of the initial 
disturbance and its conversion into a vortex, the character of the particle motion remains 
regular. A generation mechanism of an entirely different type, when a concentration of vorti- 
city arises from random motions of particles, is possible in principle [4-7]. This regime of 
excitation of vortex formations has hardly been studied. 

An installation was built to obtain and investigate vortices: a rotating cylindrical 
chamber, the flat bottom of which consists of a disk and two concentric rings [8]. The diame- 
ter of the installation is 0.46 m. The disk has a radius of 0.1 m, while the middle and 
outer rings have widths of 0.i and 0.03 m, respectively. Water, rotating together with the 
vessel, fills it to a depth of 0.025 m. The liquid is subjected to the action of two opposite 
flows. They are created by clockwise rota~tion of the disk and counterclockwise rotation of 
both rings. The rings rotate at the same ~elocity, different from the velocity of the disk. 
The vessel as a whole rotates at the same velocity and in the same direction as the disk. The 
sign of rotation of the ring s is arbitrarily taken as negative. The motions at the surface 
of the liquid were made visible by light scattering from mlcr<~partlcles moving along with the 
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Fig. 1. Three-dlmenslonal structures excited in a rotating li- 
quid at certain values of the Rossby (Ro) and Taylor numbers 
(Ta~ l07) and of the parameter of the transition from state to 
state (~ij, i0"): a~ Ro ffi 1.0, Ta ffi 1.33; 5) Ro ffi 0.83, Ta ffi 
3.08, ~=b ffi 0.17; c~ Ro = 0.69, Ta ffi 6.9, ~bc ffi 6.0; d~ Ro = 
0.71,  Ta ffi 27 .8 ,  ~b ? 0 .2 ;  e~ Ro = 0 .62 ,  Ta = 35 ,7 ,  ~ed ffi 0 .4 ;  
f )  Ro = 0 .64,  Ta ~0 Ere = 2 .0 .  

stream. Particles with a size of 10-20 Bm were used for velocity measurements from trajector- 
ies of their motion recorded on photographic film. Qualitative observations of the organiza~ 
tion of motions during the excitation of vortex formations were made with particles of poly- 
urethane foam with a size of 200 ~m. The methods of observation and analysis of the patterns 
formed at the liquid surface are similar to those used in a number of papers [9-11/. The ex- 
periments were made with different ratios between the angular velocities of rotation of the 
disk and rings. 

The initial steady three-dimensional structure which is excited in the rotating liquid 
consists of two elliptical cells. They develop upon a relatively small difference, fixed in 
time, in the rotation velocities of the disk and rings (Fig. la). The motion of particles in 
these cells has a closed character. With an increase in the difference between the rotation 
velocities of the disk and rings, the two cells start to be transformed into one. It has the 
form of a steady in time, spatially curved, broad, light band. A further increase in the dif- 
ference between ~he angular velocities of the disk and rings leads to the final disappearance 
of the two cells (Fig. Ib). 

~he character of the evolution of a single cell depends essentially on the amounts by 
which the velocity shear and the overall rotation increase in the given stage of development 
of the motion in comparison with the preceding stage. 

If one establishes a disk--ring shift in angular rotation considerably different from the 
valuaat which a single cell develops, while the overall rotation is increased very little, 
then the following pattern is observed. The clearly defined edges of the cell are blurred and 
the circulations are destroyed. The particle motions ultimately acquire an entirely random 
character (Fig. ic). 
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In the case when successive values of the velocity shear differ relatively little from 
the preceding ones while the overall rotation changes considerably, other transitions occur 
with a cell. It is not destroyed, and only the character of the motions in its different parts 
changes. A surge (source) of liquid is formed at one end of the cell while a drop (sink) is 
formed at the other end. In this case the mass of particles making the structure visible 
acquires the shape of a comma (Fig. id). The focal point of convergence of the strip covered 
by particles initially has an insignificant size. 

With an increase in the radial gradient of vorticity of the working liquid, the following 
occurs. The size of the region to which particles are drawn at an angle to the curved~strip 
becomes larger. The "density" of the strip, or the number of particles in it, decreases~ The 
sharpness of the boundary of the strip is more clearly displayed, while the angle at which the 
strip approaches the central cluster of particles increases. The rotation of the cluster of 
particles has a positive sign. The circulation of particles in the strip is in the opposite 
direction. 

For quantitative estimates of the discrete changes in the shear velocity and the velocity 
of overall rotation at which the modification of structures occurs, we used the Rossby and Tay- 
lor numbers. The transition between structures was characterized by the functional dependence 
of the Rossby number on the inverse Taylor number: Ro = f(Ta-1). A structure of the type of 
two cells is converted into one cell if the size A(Ro) of the change in the Rossby number be- 
tween these states, divided by the change A(Ta -I) in the inverse Taylor number, has a value 
~ab = 0"17"107" 

As a result of numerous experiments, it was established that random motions of particles 
are replaced by organized ones for ~ce = 0"40"i07 with 0.64 < Ro < 0.67 and 35.10 -I~ < Ta -~ < 
Ii0.i0 -:~ with a good degree of duplication. A regular structure is formed from irregular 
motions with a decrease in the Rossby number and an increase in the Taylor number in this 
range. It has the form of a round cluster of particles with irregular edges. Within the clus- 
ter there is rotation differing in velocity from the motion of the surrounding liquid. A 
clearly expressed region free of particles in the center of the cluster is subsequently formed. 
It corresponds to the core or so-called '~ye" of a vortex formation (Fig. le). 

From Fig. 2 it follows that, by assigning values of Ro and Ta -I in accordance with the 
equation Ro = 3.7.10 zs Ta-: + 0.5, one can obtain a vortex from irregular particle motion. We 
call this regime of generation stochastic, having in mind that in this case the dissipative 
system differs from total chaos by the capacity for incipient scochasticity. Another regime 
of vortex generation with regular particle motion is also determined by a linear dependence of 
Ro and Ta -I in the form Ro = 6.6.10:3 Ta -~ + 0.5. By comparison with the preceding case, this 
regime of vortex generation is characterized by a larger value of the angular coefficient of 
the linear dependence Ro = f(Ta-1). 

For values of the parameter ~df = 2"0~ in the range of 0.66 < Ro < 0.68 and 22.10 -:~ < 
Ta -~ < 31oI0 -:~ the development o~ vorticity with an "eye" at the center of the installation 
occurs as a result of the concentration of rotation in a spiral cell. A region of trapped 
particles rotating about the focal point of convergence of a spiral strip appears initially. 
Then particles from the spiral strip flow over entirely into the round cluster. A vortex that 
was formed through the regular motion of particles differs little in external features, in the 
final phase of its development, from one formed from random motions (cf. Fig. le and f). 

In both cases, the radius of the vortex core is less than the Rossby--Obukhov radius, while 
~he characteristic external size is greater than this size. It must be mentioned that before 
a vortex moves to the center of the vessel, it drifts in the direction of overall rotation of 
the system, lying on a line of velocity shear. In both generation regimes its drift velocity 
is close to the characteristic Rossby velocity. 

Now let us dwell on a comparison of the vortex formations that are generated from regular 
and random motions of particles. To estimate the distribution of vorticity in the vortex form- 
ations obtained, we use a method of analysis of the profiles of the funnels formed below a vor- 
tex. The observed profile of the free surface of the liquid was corrected with allowance for 
surface tension [12]. As it turned out, the velocity distribution can be approximated with 
a sufficient degree of accuracy by the law 
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Fig. 2. Dependences Ro = f(Ta -I) corresponding to regimes of generation from ran~ 
dom (i) and regular motions (2). 

Fig. 3. Velocity distribution in the vortex relative to the average rotation of 
liquid in the vessel: i) profile obtained for the vortex by Hopfinger and Browand 
[12]; 2, 3) profiles for regimes of vortex generation from regular and random mo- 
tions, respectively; 4) velocity distribution of the a~erage rotation of the entire 
mass of ~iquid in the vessel. 

TABLE i. Radial Distribu- 
tions of the Coefficient of 
Turbulent Viscosity ~t 10-4 
ma/sec, in Vortex Formations 
Arising from Regular (I) and 
Random ParticleMotions (II) 

r / r o  I II  

1,0 
1,2 
1,4 
1,6 
1,8 
2,0 
2,5 
3.0 

10,4 
9,0 
7,0 
5,9 
5,2 
4,5 
3,5 
2,8 

14,1 
12,5 
11,4 
10,5 
9,7 
9,1 
7,9 
7,0 

The exponent of the power law of radial velocity variation was determined from the ratio of 
the finlte-dlfference radial velocity gradient to the angular velocity of rotation of the 
vortex: 

A V /  Vo 
n = Ar ro 

If we assume that AV = Vo while Ar = R -- to, then n = x/(l -- x), where x = ro/R. From Fig. 3 
it is seen that a concentration of vorticity, exceeding the initial value set by the overall 
rotation of the system, is noted in the laboratory experiments and in the tests of [12]. Here 
the intensities of the vortex formations generated in the regular and the stochastic regimes 
can be considered as practically the same. There is a difference between them, as can be seen 
from Fig. 3, only in the degree of the gradient nature of the radial profiles of tangential 
velocity. The latter is a reflection of the different action of turbulence on the initial 
vorticity. Let us calculate the radial distribution of the coefficient of turbulent viscosity 
for the two regimes of vortex generation. We use the K~rm~n hypothesis [13], extending it to 
the case of plane rotation of an incompressible liquid in the form 

,/ ~ l~ ( ctV V )  
dr r 
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where 

l =  • / dg + 

For V = A/r n we have 

• 

(n q- 1)r n-I 

In Table 1 we give the data of calculations of ~' with • = 0.35 for the two regimes of vortex 
excitation. It is seen that in vortex formation during regular motion of particles the losses 
to turbulent friction prove to be smaller than in the case of the development of a vortex from 
chaos. One of the consequences~emerging from this is the existence of a limit on the increase 
in average energy of the particles when their motion becomes stochastic. Vortex creation in a 
regime of regular particle motion is associated with relatively small losses to turbulent fric- 
tion. This fact correlates well with observational data on the development of intense atmo- 
spheric vortices [14, 15]. 

NOTATION 

~:, angular velocity of rotation of the disk (~ > 0); ~2, angular velocity of rotation 
of the rings (~2 < 0); 5~ = ~ + ~2, velocity cheat; ~ = m~ - ~2, velocity of overall rota- 
tion of the liquid; Ro = A~/~, Rossby number; Ta = ~2/v2, Taylor number; 6, filling depth 
of the rotating vessel with liquid; ~ij = &(R~ parameter characterizing the transi- 
tion from one structure to another; r~ = C/O,. Rossby-Obukhov radius; V R = ~, Rossby veloc- 
ity; ro, radius of the vortex "core";~R, external characteristic size of a vortex; n, expon- 
ent of the gradient variation of tangential velocity of a vortex; Vo, maximum velocity at the 
boundary of the vortex '~ore"; ~o, angular velocity of rotation of the vortex "core"; v~, cO- 
efficient of turbulent viscosity; • K~rm~n number; ~, mixing length; A, circulation of a 
vortex. 
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